Search results for "Photo Album Management"
showing 3 items of 3 documents
Three-domain image representation for personal photo album management
2010
In this paper we present a novel approach for personal photo album management. Pictures are analyzed and described in three representation spaces, namely, faces, background and time of capture. Faces are automatically detected and rectified using a probabilistic feature extraction technique. Face representation is then produced by computing PCA (Principal Component Analysis). Backgrounds are represented with low-level visual features based on RGB histogram and Gabor filter bank. Temporal data is obtained through the extraction of EXIF (Exchangeable image file format) data. Each image in the collection is then automatically organized using a mean-shift clustering technique. While many system…
Clustering techniques for personal photo album management
2009
In this work we propose a novel approach for the automatic representation of pictures achieving at more effective organization of personal photo albums. Images are analyzed and described in multiple representation spaces, namely, faces, background and time of capture. Faces are automatically detected, rectified and represented projecting the face itself in a common low-dimensional eigenspace. Backgrounds are represented with low-level visual features based on RGB histogram and Gabor filter bank. Faces, time and background information of each image in the collection is automatically organized using a mean-shift clustering technique. Given the particular domain of personal photo libraries, wh…
A Data Association Algorithm for People Re-Identification in Photo Sequences
2010
In this paper, a new system is presented to support the user in the face annotation task. Every time a photo sequence becomes available, the system analyses it to detect and cluster faces in set corresponding to the same person. We propose to model the problem of people re-identification in photos as a data association problem. In this way, the system takes advantage from the assumption that each person can appear at most once in each photo. We propose a fully automated method for grouping facial images, the method does not require any initialization neither a priori knowledge of the number of persons that are in the photo sequence. We compare the results obtained with our method and with s…